NSTC

Genetic Algorithms
GA application : chip fabrication

• chip manufacture at the sub-micron level
 ▪ so small, lines so close, that get “crosstalk” between lines
 ▪ can reduce effect by running at a lower voltage
 ▪ but then the transistors are driven less, so harder to meet timing constraints

• post fabrication adjustment to timing characteristics
 ▪ programmable (fusible) delays in clock lines
 ▪ use GA to smooth the variance, per chip
 ▪ can run faster, meet timing constraints
 ▪ so can run at lower power
 ▪ or increase chip yields at given power

spacecraft antennae

- evolved using a LOGO-like (turtle graphics) antenna constructing programming language

“Antenna ST5-3-10 achieves high gain (2-4dB) across a wider range of elevation angles. This allows a broader range of angles over which maximum data throughput can be achieved. Also, less power from the solar array and batteries may be required.”

-- [http://ic.arc.nasa.gov/projects/esg/research/antenna.htm]
basic genetic algorithm

initialise population

breed new generation

breed offspring by crossover, mutation

evaluate population

select next generation

stopping criterion?

no

yes

finished
schemas

• consider binary chromosomes
 ▪ eg 10100, 11001

• a schema is a set of “similar” chromosomes
 ▪ plural: “schemas”, or “schemata”
 ▪ eg 1*100 = {10100, 11100}, 1*10* = {10100, 11100, 10101, 11101}
 ▪ the * is a “don’t care” symbol
 ▪ the 1 and 0 are “fixed” symbols

• there are 2^n possible binary strings of length n: $\{0,1\}^n$
• there are a total of 2^{2^n} subsets of these strings: $2^{\{0,1\}^n}$
• there are only 3^n possible schemas of length n: $\{0,1,*\}^n$
 ▪ so not every subset is definable as a schema

hyperplanes (1)

- a schema defines a \textbf{hyperplane} in the \textit{n}-dimensional string space
- the number of *s = the dimension of the hyperplane

\[
0*0 = 0(0+1)0 = \{000,010\}
\]
\[
**1 = (0+1)(0+1)1 = \{001,011,101,111\}
\]
• a given binary string of length n is a member of 2^n schemas

• a member of all the hyperplanes that contain it

$$(1+*)(1+*)(0+*) = \{110, 11*, 1*0, *10, 1**, *1*, **0, ***\}$$
some definitions

• \(f(x) \) = fitness of string \(x \) in the population

• \(n(S, t) \) = number of instances (strings \(x \)) of schema \(S \) in population at time \(t \), with \(n > 0 \)

• average fitness of instances of \(S \) in population at time \(t \)
 \[\hat{f}(S, t) = \frac{\sum_{x \in S} f(x)}{n(S, t)} \]

• \(\bar{f}(t) \) = average fitness of population at time \(t \)
evolution of schemas (1)

- $f(x)/\overline{f}(t)$ = number of offspring of x at $t + 1$ (roulette wheel selection)
 - assumption: population large enough for probabilistic reasoning
- for now, ignore effects of crossover and mutation, which can destroy (and create) strings of S
- then the expected number of instances of S at time $t + 1$ is the total number of offspring of instances of S

$$E\left(n(S,t+1)\right) = \sum_{x \in S} f(x) / \overline{f}(t)$$
evolution of schemas (2)

- this can be rewritten using the average fitness of S as

$$E(n(S, t + 1)) = n(S, t) \frac{\hat{f}(S, t)}{\bar{f}(t)}$$

- so the expected number of instances of S at time $t + 1$ is proportional to the number at time t
 - note: the fitnesses are also functions of time

- so, if S is fitter than the average (the “constant” of proportionality is greater than 1), then the number of instances of S increases exponentially
 - $\bar{f}(t)$ will also increase with time (if the search is converging!)
effect of disruption

• however, this growth result assumes no effect of the evolutionary operators

• so, now let’s include the destructive effect of crossover and mutation, to get a lower bound on this expected number, E
 - lower bound, because there will be some constructive effects, too
effect of mutation (1)

• S will “survive” a *mutation* provided that it does not occur at a fixed bit
 - **1****1**: survives mutation at “*”
 - **1****1**: destroyed by mutation at “1”

• let $p_m = \text{probability that a single bit is mutated}$
 - assume probability is independent of position in string
 - parameter of the execution

• the probability that a particular bit will not be mutated is $1 - p_m$
 - prob that no bits are mutated = $(1 - p_m)^{\#str}$
effect of mutation (2)

• **order**: $o(S) =$ number of fixed symbols in schema S
 - $o(*1*1001) = 5$
 - $o(**1****) = 1$

• the probability that no *fixed* bits will be mutated, hence the probability of S surviving mutation

$$= (1 - p_m)^{o(S)}$$

• note: the probability of survival is highest for small o
 - the fewer number of fixed bits, the less likelihood of disruption
effect of crossover (1)

- \(S \) will “survive” a *single point crossover* provided that the crossover point is not between the first and last fixed bits
 - \[**|0**01**\] : survives crossover at “|”
 - \[**0*|01**\] : may be destroyed by crossover at “|”
 - \[**0**01*|\] : survives
 - it *may* also survive between these bits, by chance, depending on the other parent

- let \(p_c = \) probability that a single point crossover is applied to a string \(x \)
 - assume probability is independent of position in string
effect of crossover (2)

- for a string of length \(l \), there are \(l - 1 \) crossover points

- **defining length**: \(d(S) \) = distance between first and last fixed symbols of schema \(S \)
 - \(d(*1**01) = 4 \)
 - \(d(**10**) = 1 \)

- between the first and last fixed bits, the number of crossover points is the defining length \(d(S) \)
effect of crossover (3)

• the probability of the crossover point being between the first and last fixed bits

\[
= \frac{d(S)}{l - 1}
\]

• example: * | * | 0 | * | * | 1 | * : \(d = 3, l - 1 = 6\)
 - half the crossover points are (potentially) disruptive,
 - half are not (for two parents making two children)
effect of crossover (4)

• the probability of being destroyed by crossover is

\[\leq p_c \frac{d(S)}{l-1} \]

- fuller accounts include probability of both parents having S, hence of S surviving crossover

• hence the probability of surviving crossover is

\[\geq 1 - p_c \frac{d(S)}{l-1} \]

• note: the probability of survival is highest for small d
 - the shorter the schema, the less likelihood of disruption
building blocks

- **building blocks** (BBs) = schemas of
 - low order o (best survival of mutation disruption)
 - short defining length d (best survival of crossover disruption)
 - high fitness f ("fitness coefficient" greater than 1)
 - hence what is a BB is a function of the current fitness

- analogy between BBs and (biological) genes
Schema Theorem [Holland 1975]

- putting these survival probabilities into the simple original equation, we get the bound

\[
E(n(S, t + 1)) \geq n(S, t) \frac{\hat{f}(S, t)}{f(t)} \left(1 - p_c \frac{d(S)}{l - 1}\right) \left(1 - p_m\right)^{o(S)}
\]

- (fitness growth x crossover disruption x mutation disruption)

- BBs (fit, short, low order schemas) will have a “growth coefficient” \(k > 1 \)

\[
E(n(S, t + 1)) \geq k n(S, t)
\]

- **Schema Theorem**: BBs increase (roughly) exponentially in the population
Building Block hypothesis [Goldberg 1989]

• **implicit parallelism**: all BBs (all fit schemas) grow in parallel

• what of constructive effects of crossover?
 - crossover can combine strings containing individual BBs into strings containing several BBs

• **Building Block hypothesis**: GA’s power comes from the mechanism of crossover combining BBs to produce better solutions
 - *assumption*: a string with multiple BBs is fitter than a string with fewer BBs
 - mutation – supplies diversity
BB assumption: deception and epistasy

• deception
 ▪ the fit building blocks are not schemas of the global maximum
 ◦ \(f(00) = 7, f(01) = 5, f(10) = 1, f(11) = 9 \)
 ◦ \(f(0^*) = 6, f(1^*) = 5 \), yet solution is \(f(11) \)
 ▪ the small building block stepping stones are deceptive

• epistasy
 ▪ interaction of different genes
 ▪ if highly epistatic, there are no small building blocks to act as stepping stones
 ◦ multiple genes must have the right values to give high fitness
BB hypothesis : cGAs

- **cGAs (Compact Genetic Algorithms)** represent the population as a probability vector, rather than as a set of bit strings
 - the ith component of the probability vector gives the probability that the ith bit of an individual’s string is a 1
- **very compact representation**
 - store a single vector of numbers, v. a population of bit strings
 - suitable for small memory, real time evolution in hardware
 - works (surprisingly?) well in practice
- **does not rely on BB hypothesis**
 - probability vector loses information about correlations between “genes”, or BBs
 - “1-bit optimiser”

k-armed bandit theory

- “fruit machine”, “slot machine” = a “one-armed bandit”
 - because it has one arm, and it steals your money!
- consider a k-armed bandit, where each arm has an average payoff, per go (per “trial”) of μ_i, with a variance σ^2_i
- you are allowed M trials, but you do not know these payoffs
- what is your optimum strategy for assigning trials to arms, to maximise your total return (including during the trials)?
 - a classic problem in statistics
2-armed bandits and GAs

• Holland solved this analytically for $k = 2$
 ▪ as the trials progress, exponentially increase the probability of selecting the better-performing arm over the poorer-performing arm

• the GA implicitly adopts this strategy, via its “implicit parallelism” – so might it be optimal?
 ▪ it’s not that simple!
 ▪ k-armed bandit’s arms are independent variables, but schemas interact/overlap, and so the GA does not sample them independently

• but it is a suggestive approximation
GA analyses

- Schema Theorem
 - concise intuitive descriptions
 - coarse grained: relatively crude averaging over schemas

- Markov chain models
 - future of process depends only on the present state, not the past history
 - search algorithm depends only on current state, not search trajectory
 - EA progression depends only on current population
 - more detailed fine grained models
 - useful for convergence results
 - lead to computationally intractable equations
GA parameter tweaking

- initialisation
 - usually random individuals, spanning the parameter space
- population size
 - a few 100 to a few 1000
- mutation rates, genetic operators
 - lots of variants possible!
 - adaptively evolve these parameters, too
- diversity
 - loss of diversity may cause premature convergence to a non-optimal solution
co-evolution

• as a way of increasing selection pressure
• as the solution improves, change other parameters
 ▪ evolve (change) fitness landscape from initial one that is easier to search (or cheaper to calculate) to one closer to real problem
 ▪ co-evolving competing populations
 ❖ each forms the other’s landscape
 ▪ co-evolve population and test cases
 ❖ as the solution improves, the test cases get harder
 ▪ co-evolve population of simulated robots, and fitness simulator
 ❖ simulator need cover only the aspects of solution being explored
• Hillis : coevolved a sorting algorithm and its test cases
 ▪ fitness of test cases based on how *poorly* they were sorted by the algorithm

niching and parallelism

• parallel implementation

• subpopulations evolve in parallel with little interaction
 ▪ non-competing “species”
 ▪ helps maintain diversity between the sub-populations

• interaction controlled at a few points
 ▪ limited amount of competition

• more parameters to play with
 ▪ number/size of sub-populations, migration rate and policy, …
 ▪ vary parameters across populations
Genetic Programming

- GP is a kind of genetic algorithm where each chromosome is a computer program
- execute each program to evaluate its fitness
 - the program may itself be the artefact of interest
 - execute it on test cases to see how well it performs its task
 - often the artefact of interest is built, or “grown”, by executing the program
 - eg, a program that draws a circuit diagram
 - evaluate the resulting circuit by, eg, simulation
 - a second order encoding
 - can include iteration, choice, etc, as well as terminal values
 - so there can be a big distance between genotype (program) and phenotype (result of execution)
sample applications

- Koza, *Genetic Programming*, vols I-IV
 - “human-competitive” results
 - patented electrical circuits

- quantum circuits
 - GP trees encode rules for describing circuits

- control applications
 - robot motor controls
 - the program itself is the artefact of interest

- clustering applications
 - data mining, rule induction, bioinformatics
bioinformatics applications

• vast amounts of biological data being generated
 ▪ gene sequencing
 ▪ gene expression data (which genes are affecting which others)
 ▪ protein data
 ▪ metabolic pathways and networks
 ▪ complex diseases
 ▪ ...

• this data is
 ▪ noisy
 ▪ very complicated
 ✷ mechanisms evolved over billions of years
 ✷ highly non-linear

• GP can evolves programs (rules) that “explain” the data
 ▪ in terms that make sense to biologists
GP : representing programs (1)

• the program is usually represented as a tree
 ▪ the parse tree of the programming language
 ▪ mathematical operators for function evaluation
 ▪ “turtle graphics” language for drawing circuits
 ▪ ...

• variants use lists (eg, assembly language models), graphs, and other structures
 ▪ with suitably adapted operators

• these trees are of variable sizes
 ▪ compared to fixed length bit string chromosomes
 ▪ usual to put a limit on the depth
GP : representing programs (2)

• syntactically correct programs
 ▪ design the language to maximise syntactically correct trees
 ♦ Lisp was an early favourite choice, for this reason
 ▪ constrain evolution operators, to ensure correct generation
 ▪ “fix-up” trees before evaluation

• GP computational metaphor, whilst keeping the underlying idea of evolution = inheritance, variation, selection, has moved far from the biological model of linear chromosomes
 ▪ since its representation (tree chromosomes) is far from biology, maybe its variation operators should be similarly far from biology? Use something other than crossover?
EAs: unexpected solutions

• some apocryphal(?) tales about evolving a (simulated) robot (brain and body) to “travel as far as possible”:
 ▪ One solution was very tall. All it did was fall over. The way fitness was defined, this counted as going a very long horizontal distance.
 ▪ One solution found an error in the physics simulation code, and learned to “fly”.
 ▪ One robot started vibrating very fast, and generated a divide-by-zero. This counted as infinite fitness, because it had “travelled” infinitely far.

• These kind of things happens *all the time* with EAs!